Nueva «situación de emergencia» en Fukushima por graves problemas en un segundo reactor

El reactor 3 de la central japonesa sufre fallos similares a los registrados ayer en el reactor 1 por la avería de refrigeración.- Los expertos no descartan que se haya podido fundir el núcleo.- Hasta 160 personas pueden haberse visto expuestas a la radiación, que sobrepasa los límites de seguridad.

4

Japón, modelo de país nuclear, ejemplo de uso de tecnología atómica incluso en la peor zona sísmica del planeta, vive días de pesadilla pendiente de la central de Fukushima I, a 240 kilómetros de Tokio. La situación parece complicarse por momentos. Mientras los equipos luchaban anoche por enfriar la central mediante la inyección de agua de mar, el reactor 3 empezaba a dar problemas al verse afectado por la misma avería que ayer provocó una explosión en el número 1, al dejar de funcionar el sistema de refrigeración de emergencia. Al amanecer, la operadora de la central ha informado de que el reactor 3 está emitiendo radiación por encima del límite de seguridad y que existe una «situación de emergencia» porque el nivel de agua ha descendido hasta dejar al descubierto tres metros de barras de combustible. El Gobierno asegura que no hay peligro para los ciudadanos.

Japón tiene 54 nucleares en 18 emplazamientos que suman 47.000 megavatios de potencia instalada. La atómica supuso el año pasado el 29% de la electricidad del país.  

Lucha contra reloj

El terremoto del viernes, de 8,9 de magnitud en la escala de Richter, fue demasiado para la central de Fukushima I, propiedad de Tokio Electric Power (Tepco) y cuyo primer reactor abrió en 1971. Los reactores 1, 2, y 3 pararon automáticamente con el seísmo. Los otros tres del enorme complejo atómico en la costa estaban en tareas de mantenimiento.

Al caerse el sistema eléctrico, se apagó también el sistema de refrigeración de la central. En una nuclear hay que sacar calor continuamente del reactor, lo que se consigue con varios sistemas de circulación de agua. Tras el seísmo, se pusieron en marcha los generadores diésel de emergencia -suele haber cuatro por planta- para bombear agua a la refrigeración. Pero una hora después llegó el tsunami e inutilizó también la refrigeración de emergencia.

Una central nuclear es como una muñeca rusa: la vasija del reactor, de metal, está rodeada por el edificio de contención -con muros de hormigón y acero-, que, a su vez, está recubierto por el edificio del reactor, en este caso un cubo de cemento.

Con una refrigeración precaria, «dentro del núcleo empezó a subir la presión» por la acumulación de gases radiactivos, según explicó el físico nuclear Manuel Fernández Ordóñez. La central comenzó a abrir válvulas de alivio para soltar gases a la contención. «Por hacer una analogía sencilla, imaginemos que el núcleo del reactor es como una olla exprés. Si sube mucho la presión hay que abrir la válvula, lo que libera gases hacia la cocina, que es el edificio de la contención, pero no hacia el exterior», señaló Fernández Ordóñez. Aun así, la presión en el edificio de la contención siguió subiendo. «La contención está a menor presión que el exterior para que, si hay una grieta, no salga nada hacia afuera. La presión normal dentro es de 400 kilopascales y en el exterior es de 1.000. En la central la presión subió hacia 600 y luego a 850. Entonces decidieron abrir y sacar hacia el exterior el gas contaminado. Se filtra pero siempre sale vapor radiactivo».

Las autoridades japonesas primero ordenaron evacuar las poblaciones en un radio de tres kilómetros de la central, luego de 10 y finalmente de 20 kilómetros. Los medidores de radiación en el exterior reflejaron el vertido. A las cuatro de la mañana (hora japonesa) el exterior registraba una radiación natural de 0,07 microsievert por hora. A las 15.29, la medición era de 1.015 microsievert/hora, 14.500 veces más, y de ahí empezó a decaer. A las diez y media de la mañana de este domingo (dos y media de la madrugada en la península española), la operadora de la central informó a la agencia Kyodo de que el reactor número 3 había empezado a emitir radiación por encima de los niveles de seguridad, hasta alcanzar los 882 microsiervert por hora.

Explosión fatal

Si la información que llegaba desde Fukushima era confusa todo empeoró a las 15.36 (las 07.36 hora peninsular española), cuando una explosión sacudió la planta y el humo se divisó a kilómetros. El espectro de Chernóbil recorrió el planeta. La agencia japonesa de seguridad nuclear (NISA) aseguró posteriormente que la explosión no había afectado al edificio de la contención, aunque sí se había llevado parte del techo y de la pared del edificio del reactor. Japón atribuyó la explosión a que parte del hidrógeno liberado había explotado.

Cinco horas después de la explosión, las autoridades japonesas intentaron una opción a la desesperada: refrigerar la nuclear directamente con agua de mar y ácido bórico, una sustancia que absorbe neutrones.

El portavoz del Gobierno japonés, Yukio Edano, afirmó que este era un método «sin precedentes» y anunció que se estaban preparando para repartir yodo entre la población. «El yodo es una medida de protección de emergencia ante una posible nube radiactiva, que lleva yodo. El yodo satura la glándula tiroides y evita que actúe el yodo radiactivo», señaló Lentijo. La agencia Kyodo informó de que había tres personas hospitalizadas que habían recibido altas dosis de radiación. Según NISA, el número de personas expuestas a la radiación en Fukushima I podría ser de entre 70 y 160. Los expertos advirtieron de que si Japón no conseguía refrigerar la central podría sufrir una fusión de núcleo. Si el reactor se queda sin agua, el uranio que utiliza como combustible se funde en una especie de magma, como ocurrió en EE UU en 1979. Si el edificio de contención fallase las consecuencias serían mucho más trágicas. La presidenta del Foro Nuclear, María Teresa Domínguez, admitió que la fusión del núcleo era posible, pero recalcó: «Lo más importante es que no se dañe la contención».